A Complex Hyperbolic Structure for Moduli of Cubic Surfaces
نویسندگان
چکیده
We show that the moduli space M of marked cubic surfaces is biholomorphic to (B −H)/Γ0 where B is complex hyperbolic four-space, where Γ0 is a specific group generated by complex reflections, and where H is the union of reflection hyperplanes for Γ0. Thus M has a complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique complexe pour les modules des surfaces cubiques Résumé. Nous montrons que l’espace des modules M des surfaces cubiques marquées est biholomorphe à (B −H)/Γ0 oú B est l’espace complexe hyperbolique de dimension quatre, oú Γ0 est un groupe spécifique généré par des réflections complexes, et oú H est l’union de l’ensemble d’hyperplans de réflection de Γ0. Donc M admet une structure hyperbolique complexe, c’est à dire une métrique (incomplète) de courbure holomorphe sectionnelle constante. Version française abrégée A une surface cubique (marquée) correspond une variété cubique de dimension trois (marquée), à savoir le revêtement de P ramifié le long de la surface. L’application des périodes f pour ces variétés de dimension trois est définie sur l’espace des modules M des cubiques marquées, et cette application f prend ses valeurs dans une quotient de la boule unitaire dans C par l’action du groupe de monodromie projective. Ce groupe Γ0 est généré par des réflections complexes dans un ensemble d’hyperplans dont nous notons la réunion par H. Alors nous avons le resultat suivant: Théorème. L’application des périodes définit une biholomorphisme
منابع مشابه
The uniformizing differential equation of the complex hyperbolic structure on the moduli space of marked cubic surface II
The relation between the uniformizing equation of the complex hyperbolic structure on the moduli space of marked cubic surfaces and an AppellLauricella hypergeometric system in nine variables is clarified.
متن کاملG Eom Etrie Alg Ebrique/algebraic Geometry a Complex Hyperbolic Structure for Moduli of Cubic Surfaces Version Frann Caise Abr Eg Ee
We show that the moduli space M of marked cubic surfaces is biholomorphic to (B 4 ? H)=? 0 where B 4 is complex hyperbolic four-space, where ? 0 is a speciic group generated by complex reeections, and where H is the union of reeection hyperplanes for ? 0. Thus M has complex hyperbolic structure, i.e., an (incomplete) metric of constant holomorphic sectional curvature. Une structure hyperbolique...
متن کاملCurvature of Innnite Branched Covers; Application to Moduli of Cubic Surfaces
We study branched coverings in several contexts, proving that under suitable circumstances the cover satisses the same upper curvature bounds as the base space. The rst context is of branched covers of an arbitrary CAT() space over an arbitrary complete convex subset. The second context is of a certain sort of branched cover of a Riemannian manifold over a family of mutually orthogonal submanif...
متن کاملA Complex Ball Uniformization of the Moduli Space of Cubic Surfaces via Periods of K3 Surfaces
In this paper we show that the moduli space of nodal cubic surfaces is isomorphic to a quotient of a 4-dimensional complex ball by an arithmetic subgroup of the unitary group. This complex ball uniformization uses the periods of certain K3 surfaces which are naturally associated to cubic surfaces. A similar uniformization is given for the covers of the moduli space corresponding to geometric ma...
متن کاملConvex Rp Structures and Cubic Differentials under Neck Separation
Let S be a closed oriented surface of genus at least two. Labourie and the author have independently used the theory of hyperbolic affine spheres to find a natural correspondence between convex RP structures on S and pairs (Σ, U) consisting of a conformal structure Σ on S and a holomorphic cubic differential U over Σ. The pairs (Σ, U), for Σ varying in moduli space, allow us to define natural h...
متن کامل